
Given the continuing fascination with “magic computers” and “self-executing
code,” it is necessary to revisit the promises – and premises - of technology-driven
improvements to transacting practices purportedly introduced by smart contracts.
Contrary to the popular narrative, smart contracts do not eliminate the need for
trust and are technically incapable of guaranteeing performance. The fascination
with clear and unbreakable rules that are executed by code obfuscates the fact that
such rules may be suboptimal and may incorrectly represent what was agreed.
It also obscures the fact that it is impossible to write perfect code. Being in plain
view and impossible to modify, changes nothing in this regard. Trust and certainty
do not magically emerge from immutability or transparency. Legal analyses of
smart contracts must be based on facts, not on fairy tales.

Smart Contracts:
Tales of Trust and Certainty

Eliza Mik*

deviate from the agreed terms.6 The purported superiority of smart
contracts rests on the assumption that, once set in motion, they will
execute exactly as written – without the possibility of subsequent
modification or interference – and ensure absolute adherence to the
rules embodied in them. Smart contracts reflect a quest for certainty
– and in an uncertain world plagued by financial crises, wars, and
pandemics nothing seems more certain than code.7

Despite their purported importance, the technological characteristics
of smart contracts remain largely misunderstood, at least in legal
scholarship. It is, after all, easier to believe in tales of techno-solu-
tionism than to analyze technical facts. While smart contracts are
generally associated with the broader ideologically-driven narrative
surrounding blockchains and cryptocurrencies, it must be remem-
bered that they predate blockchains.8 It must also be remembered
that the popular claims made in relation to blockchains do not nec-
essarily hold true for smart contracts. Arguably, some smart contract
scholarship may have progressed too quickly, with their transform-
ative potential and their ability to eliminate the need for trust being

Helen Eenmaa-Dimitrieva and Maria Jose Schmidt-Kessen, ‘Creating
Markets in No-Trust Environments: The Law and Economics of Smart
Contracts’ (2019) 35 CLSR 69.

6 Law Commission, Smart Legal Contracts Advice to Government (Law Com
401, 2021) 12.

7 Simon Dingle, In Math We Trust: Bitcoin, Crypto Currency and the Journey to
Being Your Own Bank (Tracey McDonald Publishers 2018); Kevin Werbach,
‘Trust, But Verify: Why the Blockchain Needs the Law’ (2018) 33 Berkeley
Tech L J 489; Eenmaa-Dimitrieva and Schmidt-Kessen (n 5); Primavera De
Filippi, Morshed Mannan and Wessel Reijers, ‘Blockchain as a Confidence
Machine: The Problem of Trust & Challenges of Governance’ (2020) 62
Tech in Soc 101284.

8 Nick Szabo, ‘Formalizing and Securing Relationships on Public Net-
works’ (1996) 2 First Monday.

1. Introduction
Tales of smart contracts feature evil bankers, corrupt judges, over-
priced lawyers, and opportunistic contracting parties – none of them
can be trusted to do what they are supposed or have promised to
do. If one is to believe the popular smart contract narrative, the
only solution to the resulting problems lies in code. In the world of
smart contracts, trust and certainty are based on computation, not
on the traditional protections offered by the legal system or on the
reputation of the counterparty. Secure, infallible, and unbiased code
replaces unpredictable and biased humans. Smart contracts are set to
“revolutionize private ordering”1 by providing certainty2 and “absolute
confidence in possible outcomes.”3 In the world of smart contracts,
performance is guaranteed by code4 and legal enforcement is
enhanced by - if not altogether replaced with - technological enforce-
ment.5 Unlike humans, code cannot change its mind, refuse to act, or

1 Mark Verstraete, ‘The Stakes of Smart Contracts’ (2019) 50 Loyola U Chic
L J 743.

2 Jan Kalbantner and others, ‘A DLT-based Smart Contract Architecture for
Atomic and Scalable Trading’ (2021) https://arxiv.org/abs/2105.02937
accessed 1 October 2022; see generally: Michael J Casey and Peter Vigna,
The Truth Machine: The Blockchain and the Future of Everything (St Mar-
tin’s Press 2018).

3 Gavin Wood, ‘Ethereum: A Secure Decentralised Generalised Transaction
Ledger’ (2015) 1, http://gavwood.com/paper.pdf accessed 1 October 2022.

4 Sara Green, ‘Smart Contracts, Interpretation and Rectification’ (2018)
24 LMCLQ 234, 236; Kevin Werbach and Nicholas Cornell, ‘Contracts Ex
Machina’ (2017) 67 Duke L J 313, 352

5 Oliver R Goodenough, ‘Integrating Smart Contracts with the Legacy Legal
System: A US perspective’ in Benedetta Cappiello and Gherardo Carullo
(eds), Blockchain, Law and Governance (2021 Springer) 191, 193, 194;

Eliza Mik, Smart Contracts: Tales of Trust and Certainty,
Technology and Regulation, 2022, 100-112 • Https://doi.org/10.26116/techreg.2022.010 • ISSN: 2666-139X

eliza@elizamik.io

smart contracts,
digital contracts,
crypto-regulation,
blockchain,
Ethereum, smart
contract regulation

* Eliza Mik is assistant professor at the Faculty of Law at the Chinese
University of Hong Kong.

Received 31 Mar 2022, Accepted 12 Oct 2022, Published: 27 Oct 2022.

101 Smart Contracts: Tales of Trust and Certainty TechReg 2022

taken for granted. It is thus necessary to pause, take a step back and
re-examine the popular claims surrounding this phenomenon. This
paper can thus be regarded as an overdue, critical evaluation of their
technical attributes. It aims to put legal analyses of smart contracts,
including any regulatory efforts in this area,9 on a firmer factual foot-
ing. The legal response to smart contracts, if any, should depend on
their capabilities and on the risks they may present10 - not on abstract,
unverified claims. Although the technologies are complex, the points
made here are simple: smart contracts cannot eliminate the need for
trust and cannot guarantee commercial outcomes. Irrespective of
whether they are treated as contracts in the legal sense, as technolo-
gies that facilitate contracting or as the back-end of distributed appli-
cations, smart contracts may increase, rather than alleviate, certain
transactional risks.

The idea of technologically enhancing the enforcement of legal
rules is, of course, not new. It is reflected in Lessig’s “code is law”11
approach, as well as in the concept of normative technologies.12 In the
context of smart contracts, code ensures adherence to certain rules,
such as those deriving from contractual obligations, by automatically
executing them on blockchains – not by forcing or nudging humans
to obey them. While “code is law” and normative technologies are
predominantly discussed in the context of public law, smart contracts
seem to dominate in the area of private agreement.

1.1 Roadmap
After introducing various descriptions of smart contracts and com-
menting on the scant definitions of trust in the blockchain narrative,
the discussion commences with some important technical distinc-
tions. To evaluate the common claims made with regards to smart
contracts, it is necessary to understand their technical attributes,
particularly their relationship with blockchains. It is also necessary
to appreciate the different types and roles of blockchains. The latter
can function as databases and/or as computational platforms. To this
end, this paper focuses on the Ethereum blockchain, which was spe-
cifically designed to enable smart contracts,13 and compares it with
the original Bitcoin blockchain, which was designed as an alternative
payment system.14 Taking Bitcoin and Ethereum as examples, this

9 For general descriptions of such efforts see: Thiebault Schrepel, ‘Smart
Contracts and the Digital Single Market Through the Lens of a “Law +
Technology” Approach’ (European Commission Report 2021); Julian
Mouton, ‘Regulating Smart Contracts in the Domain of Financial Trading’
(2021) 57 Cal West L Rev 441; Agata Ferreira, ‘Regulating smart contracts:
Legal revolution or simply evolution?’ (2021) 45 Telecomm Policy 102081,
9-14;; for specific regulatory attempts in the United States see, for example:
Arizona Revised Statutes Title 44, para 44-7061(2017); Nevada State Bill
398 (2017); California Assembly Bill 2658 (2018)).

10 Andres Guadamuz, ‘All Watched Over by Machines of Loving Grace: A Crit-
ical Look at Smart Contracts’ (2019) 35 CLSR 1.

11 Lawrence Lessig, Code version 2.0 (Basic Books 1999).
12 Mireille Hildebrandt, Smart Technologies and the End(s) of Law, Novel Entan-

glements of Law and Technology (Edward Elgar 2015); Roger Brownsword,
Rights, Regulation, and the Technological Revolution (OUP 2008); Bibi van den
Berg and Ronald E Leenes, ‘Abort, Retry, Fail: Scoping Techno-Regulation
and Other Techno-Effects’ In M. Hildbrandt, & A. M. P. Gaakeer (Eds.), Hu-
man law and computer law: Comparative perspectives (Springer 2013).

13 At present, Ethereum remains the second most popular blockchain and
the dominant smart contract platform, with the vast majority of legal
and technical writings treating it as a point of reference when discussing
smart contracts. Other public blockchains, such as Cardano, Hyperledg-
er or Avalanche also offer smart contracts; see generally: Andreessen
Horowitz, ‘State of Crypto – An Overview Report’ (2022) https://a16zcryp-
to.com/state-of-crypto-report-a16z-2022/ accessed 1 October 2022.

14 Satoshi Nakamoto, ‘Bitcoin: A Peer-to-Peer Electronic Cash System’
(2008) 1 https://bitcoin.org/bitcoin.pdf accessed 1 October 2022.

paper focuses on permissionless rather than permissioned block-
chains as the latter are generally governed by one or more organ-
izations and cannot be considered as decentralized or trustless.15
Given that much of the existing confusion seems to derive from the
conflation of certain features of smart contracts with certain features
of blockchains, it is necessary to draw a clear distinction between
these two. The fact that smart contracts execute on blockchains
does not mean that they are like blockchains. The paper proceeds to
describe the difficulties of ensuring the technical correctness of code.
Next, as the elimination of trust and the promise of certainty seem to
derive from a combination of transparency and immutability, these
two attributes are investigated in more detail. The paper proceeds to
examine oracles, entities providing smart contracts with information
about the fulfillment of payment conditions. Oracles also illustrate
the difficulties of creating a system that tries to replace trust with
technology alone.

Two caveats before proceeding. First, this paper does not join the
debate whether smart contracts are contracts in the legal sense.
Instead, it acknowledges the terminological uncertainty surround-
ing smart contracts and critically revisits the claims regarding their
potential to revolutionize commercial interactions. Before debating
the legal implications of smart contracts (including the questions
whether they are contracts and whether they require regulation) it is
necessary to understand their actual characteristics and capabilities.16
Just because a technology is called a smart contract does not make it
a contract.17 Maybe smart contracts are contracts and maybe they are
“only” computer programs that facilitate contracting.18 In principle,
there are no doctrinal obstacles for smart contracts to be contracts in
the legal sense. 19 Their legal classification depends on the jurisdic-
tion, whether a legal system permits the automation of the formation
and/or performance of a contract and whether it allows for agree-
ments to be expressed in code.

Second, some readers may object to the level of technical detail.
Some detail is, however, indispensable to present the complexity of
the issues involved - especially when it comes to difficulties of writing

15 There are blockchains that do not fall into either categorization as they
constitute a hybrid model. Sometimes, the term “permissioned” is used
interchangeably with “private” and the term “permissionless” with “pub-
lic” but these terms are not used consistently, see generally D J Yaga and
others, ‘Blockchain Technology Overview,’ National Institute of Standards
and Technology Internal/Interagency Report 8202 (2018) 5; X Xu and others
’A Taxonomy of Blockchain-Based Systems for Architecture Design’in
(2017) IEEE International Conference on Software Architecture (ICSA) 234.

16 Jake Goldenfein and Andrea Leiter, ‘Legal Engineering on the Blockchain:
Smart Contracts as Legal Conduct’ (2018) 29 Law & Critique 141, 143; Gua-
damuz (n 10) 2: “Most of the scholarly and practical analysis so far has
been taken the claims of this technology being akin to a contract at face
value, with legal analysis of contract formation, performance, and enforce-
ment at the forefront of the debate. … [W]hile smart contracts may pose
some interesting legal questions, most of these are irrelevant, and smart
contracts should be understood almost strictly from a technical perspec-
tive, and that any legal response is entirely dependent on the technical
capabilities of the smart contract.”

17 Carla L Reyes, ‘A Unified Theory of Code-Connected Contracts’ (2021) 46 J
Corp L 981, 998; Nataliia Filatova, ‘Smart Contracts From the Contract Law
Perspective: Outlining New Regulative Strategies’ (2020) 28 IJILT 217, 225;
Farshad Ghodoosi, ‘Contracting in the Age of Smart Contracts’ (2021) 96
Wash L Rev 51.

18 Reyes (n 17) 998.
19 For a detailed discussion see: Eliza Mik, ‘Smart Contracts: Terminology,

Technical Limitations and Real-World Complexity’ (2017) 8 LIT 1; Andrea
Stazi, Smart Contracts and Comparative Law (Springer 2021) particularly
84-87.

102 Smart Contracts: Tales of Trust and Certainty TechReg 2022

is adopted as a point of departure and whether one choses to rely
on technical or on legal literature. Unfortunately, the latter often
“recycles” a series of common statements without confirming their
correctness. It is, of course, possible to analyze smart contracts from
a legal perspective, just like it is possible to analyze computer pro-
grams from the perspective of intellectual property law, contract law
or criminal law, amongst others. Such analyses may become unavoid-
able when, for example, smart contracts do not execute as intended
and cause financial losses. The specific legal approach will depend
on the context in which a given smart contract is used and on the
financial losses or legal infringement involved. Comparing smart con-
tracts to contracts or to contractual documents may, however, often
be unnecessary. To execute a contract means to sign the final version
of a formalized agreement. To execute a smart contract means to run
its code on a blockchain.30 It is also worth remembering that technical
literature refers to smart contracts as being created, deployed, called or
used rather than formed or performed.31

In practice, most smart contracts constitute mechanisms facilitat-
ing the transfer of cryptocurrencies32 or the back-end of so-called
distributed applications, that is, programs running on multiple
computers within a network. 33 While the latter description (“back-
end of distributed applications”!) is the least exciting, it is probably
the most important. If smart contracts are synonymous with the
back-end of distributed applications, then they are an indispensable
component of Decentralized Finance (DeFi),34 Non-fungible Tokens
(NFTs),35 Decentralized Autonomous Organization (DOAs)36 or,
in fact, any “traditional application” that is put on a blockchain in
order to become decentralized. If such broad but purely technical
definition of smart contracts is adopted, their actual and potential
role becomes impossible to trivialize. At the same time, it renders it
more difficult to analyze smart contracts “as if ” they were contracts
in the legal sense.

1.3 A Word on Trust
The blockchain narrative does not provide an unequivocal definition
of trust.37 This is unsurprising given that blockchains are supposed
to eliminate the very need for trust or, to use the core term in the
blockchain ideology, to be “trustless.” If trust is eliminated, it need
not be defined. The meaning of trust is context-dependent and not

30 Technically, the code is not run “on the blockchain” but, in most instances,
on the Ethereum Virtual Machine, for a detailed description of code execu-
tion in the context of Ethereum, see: Cohney and Hoffman (n 22) 340-344.

31 Examples of smart contracts given in technical literature are casinos,
games, lotteries, distributed applications, DOAs, tokens and cryptocur-
rencies – none of which are contracts in the legal sense; see, for exam-
ple: Simon Joseph Aquilina and others, ‘EtherClue: Digital investigation of
Attacks on Ethereum Smart Contracts’ (2021) 2 Blockchain: Research and
Applications 1; Zibin Zheng and others, ‘An Overview on Smart Contracts:
Challenges, Advances and Platforms’ (2020) 105 FGCS 475.

32 A cryptocurrency is “a digital asset or unit within the system, which is
cryptographically sent from one blockchain network user to another”,
Yaga (n 15) 49.

33 Andreas Antonopoulos and Gavin Wood, Mastering Ethereum (2nd edn,
O’Reilly 2020) 269.

34 Fabian Schär, ‘Decentralized Finance: On Blockchain- and Smart Con-
tract-based Financial Markets’ (2021) 103 FRB St Louis Rev 153.

35 Dan Chirtoaca, Joshua Ellul and George Azzopardi, ‘A Framework for
Creating Deployable Smart Contracts for Non-fungible Tokens on the
Ethereum Blockchain’ (2020) IEEE International Conference on Decentral-
ized Applications and Infrastructures (DAPPS) 100.

36 Vimal Dwivedi and others, ‘Legally enforceable smart-contract languages:
A systematic literature review’ (2021) 54 ACM CSUR 1.

37 The original Bitcoin Whitepaper predominantly refers to trusted third par-
ties but does not discuss trust per se, see: Nakamoto (n 14).

code as well as the actual implications of immutability and transpar-
ency. The “technicalities” are kept to a minimum, illustrating broader
points, rather than claiming to be exhaustive. Further technical details
can be found in the technical references.

1.2 Definitions & Descriptions
Smart contracts have multiple, inconsistent definitions. They have
been described as “the execution of a digital contract,”20 “systems
which automatically move digital assets according to arbitrary
pre-specified rules,”21 “transactional scripts,”22 “conditional instru-
ments for transferring money,”23 “low-level code stored and running
on a blockchain”24 or the embedding of legal terms in hardware and
software to prevent breach.25 The US National Institute of Standards
and Technology defines a smart contract as a “collection of code and
data (sometimes referred to as functions and state) that is deployed
using cryptographically signed transactions on the blockchain net-
work,”26 or as “attestable application processes,”27 whereas a popular
cryptocurrency publication refers to them as “contracts expressed
as a piece of code that are designed to carry out a set of instruc-
tions.”28 Despite such inconsistent descriptions, the claims (or tales?)
concerning their transformative potential are surprisingly consistent:
smart contracts provide certainty and obviate the need for trust.
There are also consistent (or persistent?) references to two of their
attributes: the immutability and visibility of their code. Paradoxically
then, there is little agreement as to what smart contracts are but there
is agreement as to their key characteristics and as to their potential to
revolutionize various aspects of commerce, if not society in general.

When analyzing smart contracts, legal scholarship faces a challenge
- not only due to the lack of a single, universally accepted definition
but also due to the difficulty of selecting the best sources describing
what smart contracts are and what they can do. On one hand, there
is the broader blockchain narrative, with its ideological attachment
to decentralization and “trustlessness,” as well as sweeping claims
concerning the irrefutable significance of smart contracts. On the
other, there is technical scholarship, which contains not only com-
plex descriptions of the relevant technologies but also ill-informed
references to legal concepts – including the unfortunate term smart
“contract.” To date, legal scholarship has faced the challenge of
“reconciling” ideology with technology – not to mention the challenge
of establishing the factual veracity of the popular claims concerning
smart contracts.29 For present purposes, it is worth remembering that
the exact meaning of the term “smart contract” is context-sensitive.
Moreover, legal analyses will differ depending on which definition

20 Kalbantner (n 2).
21 Vitalik Buterin, ‘Ethereum White Paper: A Next Generation Smart Contract

and Decentralized Application Platform’ (2015) github.com/ethereum/
wiki/wiki/White-Paper accessed 1 October 2022.

22 Shaanan Cohney, David A Hoffman, ‘Transactional Scripts in Contract
Stacks’ (2020) 105 Minn L Rev 319, 323.

23 Mouton (fn 9) 461.
24 Alessandro Brighente, Mauro Conti and Satish Kumar, ‘Extortionware: Ex-

ploiting Smart Contracts Vulnerabilities for Fun and Profit’ (2022) https://
arxiv.org/abs/2203.09843 accessed 1 October 2022.

25 Szabo (n 8).
26 Yaga (n 15) 54.
27 Yaga (n 15) 3.
28 Matt Hussey and Daniel Phillips, ‘What are Smart Contracts and how

do they Work?’ (Decrypt, April 28, 2022) https://decrypt.co/resources/
smart-contracts accessed 1 October 2022.

29 For an overview of such claims, see Kelvin FK Low and Eliza Mik, ‘Pause
the Blockchain Legal Revolution’ (2020) 69 ICLQ 135; Michèle Finck, Block-
chain: Regulation and Governance in Europe (2018 CUP).

103 Smart Contracts: Tales of Trust and Certainty TechReg 2022

blockchains as databases, or distributed ledgers, must be distin-
guished from their more recent use as computing platforms. At a
basic level, databases store data and computing platforms execute
code. Designed as an alternative payment system, the original Bitcoin
blockchain provides mechanisms for the storage, generation, and
transfer of its native cryptocurrency. The focus is on creating a secure,
immutable record and simple, irreversible transfers between accounts
represented as publicly visible addresses. Contrary to popular belief,
the Bitcoin blockchain does not enable or support complex compu-
tations although each individual block is the product of extremely
complex and expensive computations performed by the network of
nodes running the consensus algorithm. In Bitcoin, the early equiva-
lents of smart contracts take the form of cryptographic functions such
as hash-locks, time-locks, and multi-signatures.46 Such Bitcoin-based
smart contracts are simple scripts that provide a set of pre-defined
transfer conditions.47 In response to the growing demand not just
to hold but to transact in crypto, the Ethereum blockchain has been
purposefully created to equip blockchains with customizable (that is:
user-defined) business logic enabling a wider range of transactions.48
What is important in the present context is that although Ethereum is
a blockchain, it also provides a decentralized general-purpose com-
puting infrastructure that executes smart contracts and is therefore
often referred to as a “world computer”49 or “a magic computer that
anyone can upload programs to.”50 To complicate matters, smart
contracts are not executed directly on Ethereum blockchain but on the
Ethereum Virtual Machine (“EVM”), which provides a hardware- and
operating system-agnostic abstraction of computation and storage.
The EVM enables the execution of smart contracts written in different
high-level programming languages,51 but also requires their compi-
lation into low-level bytecode, an important technical detail that has
broader implications. In principle, Bitcoin can be regarded as a secure
distributed database equipped with limited transacting functional-
ity, while Ethereum can be regarded as a distributed database with
unlimited transacting functionality – at least theoretically.52 Ethereum

46 Nicholas Kannengießer and others, ‘Trade-offs between Distributed Led-
ger Technology Characteristics’ (2020) 53 ACM Computing Surveys 2;
while it could be argued that the scripts supported by the Bitcoin block-
chain are not smart contracts, this remains an isolated view. Technical lit-
erature speaks of “simple” Bitcoin smart contracts, acknowledging their
limited ability to express complex spending conditions; see generally:
Malte Moser, Ittal Eyal, Emin Gün Sirer, ‘Bitcoin Covenants’ in: Internation-
al Conference on Financial Cryptography and Data Security(Springer 2016)
216; Manuel Manuel T Chakravarty and others, ‘The Extended UTXO Mod-
el’ in: Financial Cryptography and Data Security, Lecture Notes in Computer
Science (vol 12063 Springer 2020).

47 Buterin (n 21) 11; Werbach (n 7) 506, 507: “While Bitcoin operates based on
smart contracts, it strictly limits their capabilities to basic fund transfers
for security.”

48 Ethereum has been originally described as “a blockchain with a built-in
Turing-complete programming language, allowing anyone to write smart
contracts and decentralized applications where they can create their own
arbitrary rules for ownership, transaction formats and state transition
functions” see: Buterin (n 21) 13

49 Antonopoulos and Wood, (n 33); Werbach (n 7) 55, 64, 66.
50 Vitalik Buterin, ‘Visions, Part 1: The Value of Blockchain Technology’

(2015) https://blog.ethereum.org/2015/04/13/visions-part-1-the-value-of-
blockchain-technology/ accessed 1 October 2022.

51 Kannengießer (n 46) 8; the EVM also enables cross-interoperability with
other blockchains, such as Avalanche.

52 The Bitcoin model relies on the so-called Unspent Transaction Output
(UTXO) and is regarded as more secure and scalable but also less pro-
grammable. In contrast, the Ethereum model is based on so-called “ac-
counts,” addressable on-chain objects that contain a balance, a nonce,
code and optional storage. Cardano introduced a smart contract approach
that relies on the Extended Unspent Transaction Output (EUTXO) Mod-
el, which derives from Bitcoin’s UTXO model. The EUTXO permits more

necessarily based on facts. 38 Trust often derives from beliefs - and
blockchain enthusiasts believe that something is “trustless” if it is
decentralized.39 If no single entity controls a system, and if each
node in the system is controlled by a different entity,40 then such
system obviates the need for trust in general. In the words of Anto-
nopoulos: “No one actor is trusted, and no one needs to be trust-
ed.”41 The underlying theories are inconsistent: blockchains (and,
in some contexts, smart contracts) remove the need to trust a
central entity, the other contracting party or a third party who acts
as an intermediary. In essence, the blockchain narrative seems
to regard the relationship between “decentralization” and “trust”
as self-explanatory: when no single entity controls of the system,
the system itself can be trusted. While this “explanation” may be
disappointing, it must be remembered that blockchain narratives,
unlike the technology itself, often lack precision and cohesive-
ness.42 Many narratives can in fact be regarded as post-factum jus-
tifications for a particular type of system design, rather than fully
conceptualized theoretical frameworks. To complicate matters,
the term “decentralized” may often be difficult distinguish from
“distributed.” 43 The latter concerns the architecture of a system,
the former concerns its governance or organization. At times,
decentralization may also come dangerously close to disintermedi-
ation or to a general independence from humans and/or the legal
system.44 The original Bitcoin narrative is relatively restrained and
aims at eliminating trust in payment intermediaries.45 The smart
contract narrative has, however, progressively expanded to encom-
pass not just payment intermediaries but intermediaries in general
– as well as the contracting parties themselves. This reflects the
broader problem of pinpointing the exact entity that must normally
be trusted and that should hence be replaced with code. After all,
the other contracting party is neither an intermediary nor a third
party and the vast majority of contracts do not require interme-
diaries or central authorities! Trusting a payment intermediary,
who may assist in the transfer of money in the case of payment
obligations, differs from trusting that a counterparty will perform.
Similarly, the relationship between central authorities and inter-
mediaries is difficult to comprehend, especially given that even
lawyers are often portrayed as intermediaries. Instead of trying to
reconcile these inconsistencies, it is best to accept their existence
and adopt a broad, context-dependent understanding of “trust.” It
is also advisable to focus on the technology (purportedly) elimi-
nating trust, not on the ideology proclaiming its elimination.

1.4 Technical Distinctions
To understand the capabilities of smart contracts, some technical
distinctions are necessary. More specifically, the traditional role of

38 For a discussion of the different meanings of trust see: De Filippi, Man-
nan and Reijers (n 7), Caitlyn Lustig and Bonnie Nardi, ‘Algorithmic Au-
thority: the Case of Bitcoin’ in S Misra and others (eds), 2015 48th Hawaii
International Conference on System Sciences, IEEE 243, 259; Kevin Werbach,
The Blockchain and the New Architecture of Trust (MIT Press 2018) 17-25.

39 Antonopoulos and Wood (n 33) 10; Arvind Narayan and others, Bitcoin and
Cryptocurrency Technologies (Princeton University Press 2016) 278-283.

40 Angela Walch, ‘The Path of the Blockchain Lexicon (and the Law)’ (2016)
36 RBFL 713, 720.

41 Andreas Anotonopoulos, ‘Bitcoin Security Model: Trust in Code’ (O’Reilly
Radar, February 20, 2014) http://radar.oreilly.com/2014/02/bitcoin-securi-
ty-model-trust-by-computation.html accessed 1 October 2022.

42 For descriptions see: Finck (n 29) 12, 183-185; Werbach (n 7) 509-512.
43 Angela Walch, ‘Deconstructing Decentralization’ in Chris Brummer (ed),

Cryptoassets: Legal, Regulatory, and Monetary Perspectives (OUP 2019) 39.
44 Werbach (n 7) 509-512.
45 Nakamoto (n 14) 1, 2, 8 2.

104 Smart Contracts: Tales of Trust and Certainty TechReg 2022

transacting practices, it is important to distinguish the attributes of
smart contracts from the attributes of blockchains – and to acknowl-
edge the challenges of writing programs for distributed computing
platforms. Throughout the discussion it must be remembered that if
smart contracts are supposed to replace trust and ensure certainty, it
seems crucial to be able to predict how they will execute before they
are deployed.

2.1 Smart contracts vs Blockchains
Although smart contracts execute on blockchains, they are not like
blockchains. The indiscriminate association of smart contracts
with blockchains may underlie the misconceptions regarding their
technical characteristics and hence their actual capabilities. It is, for
example, commonly assumed that if blockchains are “trustless,” then
smart contracts are also “trustless.” Technically, however, only block-
chains can have this attribute.60 “Trustlessness” denotes the ability
to determine the truth of certain information without recourse to a
trusted third party in an adversarial environment.61 In the blockchain
context, such information concerns the crypto-currencies stored
therein or, more specifically, the state of the distributed database.
Crypto-currencies are generated by the consensus algorithm as a
reward provided to those who expand computational resources to
append blocks and thus to maintain the blockchain.62 Being a product
of its underlying consensus algorithm, crypto-currencies can only
exist “in” the blockchain. Consequently, the information about the
cryptocurrencies is synonymous with the cryptocurrencies them-
selves – and it can be trusted to be correct. The blockchain is the only
authoritative source of information about the crypto-currencies gener-
ated thereby and stored therein.63 These “trust assumptions” cannot,
however, be extrapolated to smart contracts. The latter are created
by human developers and subsequently deployed on the blockchain.
Smart contracts are executed by the nodes which run the consensus
algorithm that generates blocks and the associated cryptocurrencies
- but they are not generated or validated by such algorithm. The latter
operates at a foundational layer, far below the abstraction of smart
contracts.64 Consensus algorithms are technically incapable of deter-
mining whether the code of a smart contract is correct, free of vulner-
abilities, not to mention whether it correctly represents legal terms.65
The “trustlessness” of certain information stored in the blockchain
does not translate into the “trustlessness” of the code executing on
the blockchain. Smart contracts are susceptible to programming
errors like all other computer programs. Technically, they do not – and
cannot - eliminate the need to trust someone. Multiple factors render
them unsuitable for the encoding of legal terms or, more generally, for
controlling any valuable resources.

2.2 Programming errors & vulnerabilities
Smart contracts are notorious for vulnerabilities and coding errors.66
The latter are mistakes in the implementation of a system design that

60 This relates to permissionless blockchains!
61 Leslie Lampert and others, ‘The Byzantine Generals Problem’ (1982) 4

ACM TOPLAS 382.
62 For a detailed technical description see: Andreas Antonopoulos, Mastering

Bitcoin (2nd edn, O’Reilly 2017) 26; for legal explanations see: Cohney and
Hoffman (n 22) 339.

63 Low and Mik (n 29) 145.
64 Antonopoulos and Wood (n 33) 320.
65 Buterin (n 21) 18.
66 The Smart Contract Weakness Classification (SWC) Registry collects in-

formation about various vulnerabilities, https://swcregistry.io accessed
30 March 2022; Sam Werner et al., ‘SoK: Decentralized Finance (DeFi)’
(2021) https://arxiv.org/abs/2101.08778; Nicola Atzei, et al ‘A Survey of At-

supports smart contracts that can encode more complex transfer con-
ditions and render the relevant crypto-currencies into “programmable
money” or protocols to exchange value.53 The Bitcoin blockchain
enables the encoding of some simple rules, the Ethereum blockchain
– of any rule.54 The following quote is informative: “smart contracts
provide a way to define custom ways of moving Ether between
accounts, enabling the development of sub-currencies (token),
wallets, autonomous governance, and decentralized gambling/lottery
applications, among others.”55 It demonstrates that smart contracts
equip blockchains with additional functionality and that the debate
whether they are contracts in the legal sense may be redundant.
Neither wallets, nor lottery applications can, after all, be analyzed as
contracts. What is important here is that blockchains can be used
as databases and/or as computational platforms. Certain technical
features, including transparency and immutability, may be indispen-
sable when blockchains function as databases. To recall, the original
purpose of making the blockchain’s contents universally visible is
to prevent the double spending of crypto-currencies. The inability to
change such contents aims to ensure that transactions cannot be
reversed. As demonstrated below, transparency and immutability are
less important or even detrimental in the context of smart contracts,
when blockchains function as computational platforms.

2. Trusting Code
It is useful to recall the basic fact that, notwithstanding the multitude
of inconsistent definitions, smart contracts are computer programs
and that computer programs are expressed in code. Consequently,
any claims to the effect that smart contracts can replace the need to
trust humans with the ability to trust their code,56 can hold true if –
and only if – the execution of such code guarantees the achievement
of some agreed or expected result. This, however, requires that such
code be perfect and predictable. Moreover, the common assump-
tion is that by executing legal terms “on” the blockchain, smart
contracts will “do” what was agreed. It is overlooked, however, that
smart contracts will only do what they were coded to do.57 As stated
in the leading book on Ethereum: “[a] smart contract will execute
exactly what is written, which is not always what the programmer
intended”58 or “what the agreeing parties thought it would do.”59
Executing “as coded” and “achieving what was agreed” or “intended”
are different things. Blockchains do not discriminate between good
code and bad code. If the smart contract contains errors or vulner-
abilities, those will also be executed. To understand the difficulties
involved in creating code that could guarantee the achievement of
certain results and change the trust assumptions underlying existing

expressive (speak: complex) smart contracts while providing security in
a complex, distributed computing environment; see: Chakravarty (n 46).

53 Finck (n 29) 9,10.
54 Buterin (n 21) 19; it is worth observing that Rootstock (or “RSK”) equips

the Bitcoin blockchain with the ability to support the EVM and thus more
complex smart contracts; see: Sergio Lerner, ‘Rootstock Platform: Bitcoin
Powered Smart Contracts’, RSK Whitepaper, (revised Version, 29 January
2019) at: https://blog.rsk.co accessed 1 October 2022.

55 Aquilina (n 31).
56 Werbach (n 47) 514, 517.
57 With some exceptions pertaining to unexpected interactions with other

smart contracts.
58 Antonopoulos and Wood (n 33) 171.
59 The Ethereum website states: “A smart contract is code that lives on the

Ethereum blockchain and runs exactly as programmed. Once smart con-
tracts are deployed on the network you can’t change them. (…) This also
means you need to design your contracts very carefully and test them
thoroughly.” https://ethereum.org/en/developers/docs/dapps/ accessed
1 October 2022.

105 Smart Contracts: Tales of Trust and Certainty TechReg 2022

“Smart contract code is unforgiving. Every bug can lead to
monetary loss. You should not treat smart contract programming
the same way as general-purpose programming. […] You
should apply rigorous engineering and software development
methodologies, as you would in aerospace engineering or any
similarly unforgiving discipline. Once you ‘launch’ your code,
there’s little you can do to fix any problems.”72

While not every vulnerability will be exploited and result in financial
loss,73 it can be assumed that smart contracts controlling crypto
assets with a high market value are more likely to be attacked. Before
extolling their role in replacing traditional payment intermediaries,
such as banks,74 it must be remembered that software used in finan-
cial transactions is rigorously tested before deployment to ensure its
robustness.75 Moreover, financial transactions occur in a highly reg-
ulated environment, with clear rules of risk allocation and the ability
to seek recourse against an identifiable entity. There is, however, no
assurance of the quality of smart contracts and there may be no-one
to be held liable if their execution results in losses – at least if one
follows the dominant blockchain narrative, which emphasizes decen-
tralization and disintermediation.

2.3 A new execution environment
It is rarely appreciated that many problems with smart contracts
derive from the blockchain itself: the decentralized and distributed
network of nodes where their code run.76 As indicated, decentraliza-
tion means that no single entity controls the system. It also means
that no-one is responsible for its operations or liable for its malfunc-
tions. The fascination with decentralisation obfuscates the fact that
the individual nodes in permissionless blockchains are controlled by
unknown parties, which are by definition considered potentially hos-
tile.77 It is true that blockchains provide a reliable execution environ-
ment in terms of availability and resistance to external interference.
This means that, once deployed, smart contracts cannot be stopped
or tampered with. It does not mean, however, that each smart con-
tract will execute as planned or that its execution can be predicted.
Given that permissionless blockchains, such as Ethereum, are open
to all, anyone – including malicious and/or incompetent coders - can
create a smart contract that will interact with other smart contracts.78
Consequently, while smart contracts are immune from external inter-
ference, they are not immune from unexpected interactions with other
smart contracts and from the inadvertent execution of untrusted
code.79 Perfect code (assuming, for the sake of argument, that such
can exist) may produce unexpected results when it encounters imper-
fect or malicious code. Moreover, arbitrary smart contract invocations
may progressively increase the number of interconnected contracts

72 Antonopoulos and Wood (n 33) 172.
73 see: Daniel Perez, Benjamin Livshits, ‘Smart Contract Vulnerabilities: Vul-

nerable Does Not Imply Exploited’ (2021) USENIX Security Symposium.
74 Mouton (n 9) 461-463.
75 See generally: the ‘Principles for Financial Services Infrastructure’Bank

for International Settlements and International Organization of Securities
Commissions (2012), www.bis.org/cpmi/info_pfmi.htm accessed 1 Octo-
ber 2022.

76 Loi Luu and others, ‘Making smart contracts smarter,’ in Proceedings of the
2016 ACM SIGSAC Conference on Computer and Communication Security
(ACM 2016) 254.

77 Clara Schneidewind, Markus Scherer and Matteo Maffei, ‘The Good, the
Bad and the Ugly: Pitfalls and Best Practices in Automated Sound Static
Analysis of Ethereum Smart Contracts,’ in Applications: 9th International
Symposium on Leveraging Applications of Formal Methods (ACM 2020) 9.

78 Antonopoulos and Wood (n 33) 166, 171.
79 Kannengießer (n 46) 6, 7.

result in programs not providing the intended functionality or pro-
ducing unexpected output. The former enable the malicious misuse
of a system implementation to achieve effects contrary to its goals
(so-called “exploits”). Not all vulnerabilities derive from program-
ming errors and not all programming errors can be exploited. Some
programming errors resemble those found in traditional programs
(e.g. integer overflows), others are specific to smart contracts. 67
For example, “greedy contracts” can lock Ether indefinitely and
“gasless send bugs” can prevent the execution of smart contracts.
As any public function (that is: a task-specific code module) of a
smart contract can be called (that is: activated) by another contract,
malicious users can attack vulnerable functions with relative ease.
This so-called “reentrancy bug” enables an attacker to call a contract’s
function multiple times before the initial call is terminated. If the
contract’s internal state is not securely updated, cryptocurrencies
can be drained from the contract by recursively calling the function.68
Reentrancy attacks, which are often regarded as a proxy for smart
contract robustness, have gained notoriety since the 2016 DAO hack,
which caused a loss of over 60 million US dollars. 69 Attacks on, or
hacks of, smart contracts resulting in financial losses are a common
occurrence.70 If, however, smart contracts not only control high-value
assets but are also supposed to lay the foundations for a new, decen-
tralized economy, then it seems crucial that their code be reliable.71
Admittedly, while their significance cannot be measured by the price
of the cryptocurrencies they control, such price highlights the risks
involved if a smart contract does not execute as expected or is other-
wise exploited. Programming errors and vulnerabilities translate into
monetary losses:

tacks on Ethereum Smart Contracts (SoK)’ in: M Maffei and M Ryan (eds),
Proceedings of the 6th International Conference on Principles of Security and
Trust (Springer 2017) 10; Ivica Nikolic et al., ‘Finding the Greedy, Prodigal,
and Suicidal Contracts at Scale’ (2018) https://arxiv.org/pdf/1802.06038.
pdf accessed 30 March 2022; for an excellent explanation from a legal per-
spective see: Cohney and Hoffman (n 22) 328.

67 Aquilina (n 31).
68 Oliver Lutz, et al., ‘ESCORT: Ethereum Smart Contracts Vulnerability De-

tection using Deep Neural Network and Transfer Learning’ (2021) https://
arxiv.org/abs/2103.12607 accessed 1 October 2022.

69 Muhammad Izhar Mehar et al., ‘Understanding a revolutionary and flawed
grand experiment in blockchain: the DAO Attack’ (2019) 21 JCIT 19; the
DAO was a collection of smart contracts implementing an automated
crowd-funding mechanism. An attacker exploited a bug in the withdraw
functionality, effectively stealing the invested funds. For a more detailed
description of the DOA hack and its immediate “successors;” see also
Cohney and Hoffman (n 22) 320.

70 For example, in March 2021, Binance Smart Chain-based lending proto-
col Meerkat Finance lost $31 million in user funds when an attacker called
a function in the contract that made their address become the vault
owner, draining over $17.4 million worth of stable coins and tokens; in
August 2021 a hack of the Poly Network exposed security flaws in smart
contracts in three blockchains: BSC, Polygon, and Ethereum. The hacker
aimed to showcase the risks of running unverified contracts. In April
2022, an exploit in the smart contract underpinning the algorithmic
stable coin, Beanstalk, resulted a loss of over $120 million; for an over-
view of the most prominent smart contract hacks see: https://decrypt.
co/93874/biggest-defi-hacks-heists accessed 1 October 2022; for more ex-
amples of financial losses attributable to vulnerable smart contracts see:
Chainalysis, ‘The 2022 Crypto Crime Report’ (February 2022) 75, https://
go.chainalysis.com/rs/503-FAP-074/images/Crypto-Crime-Report-2022.
pdf accessed 1 October 2022.

71 The “reliability” of software generally denotes the probability of a fail-
ure-free operation for a specified period of time in a specified environ-
ment; see: Michael R Lyu, Handbook of Software Reliability Engineering
(Vol. 222 IEEE Computer Society Press 1996) 5-7.

106 Smart Contracts: Tales of Trust and Certainty TechReg 2022

support and on the size of their developer community.87Consequently,
promoting a particular smart contract programming language is an
indirect way of promoting a particular blockchain. At present, many
smart contract programming languages “borrow” features from
traditional programming languages, which are often unsuitable for
distributed execution environments in terms of resource consump-
tion and security. The former concerns the need to limit the compu-
tations required to execute an operation, the latter concerns the fact
that many smart contracts control high-value crypto-assets and are
therefore susceptible to attacks. The combination of “half-baked” pro-
gramming languages with inexperienced programmers, has resulted
in smart contracts being notoriously insecure.88 The attentive reader
might inquire why smart contracts cannot be written in any of the
existing high-level programming languages. Some blockchains do in
fact, adopt this approach.89 In principle, however, the problem lies in
adapting such language to the constraints of the execution environ-
ment. Such adaptation would require the compilation of the source
code written in such “traditional” high-level programming language
to low-level bytecode, which could be executed by the EVM. This
would, in turn, require the creation of reliable compilers. Creating new
compilers for various high-level programming languages is, however,
a complex and time-consuming task. Moreover, being programs
themselves, compilers introduce the risk “mistranslating” the code
from a high-level to a low-level programming language.90

2.5 Trusting Coders
The blockchain narrative associates “trustlessness” with decen-
tralization and disintermediation – the elimination of the need to
trust a single entity. While the individual blocks in a blockchain are
generated by a decentralized network of independent nodes, smart
contracts are created by human coders who make them available for
general use. In other words: those very same biased, opportunistic,
and unpredictable humans are creating the code that is supposed
to eliminate the need to trust biased, opportunistic, and unpredict-
able humans. The decentralized nature of the consensus algorithm
underlying the blockchain changes nothing in this regard. Abstract-
ing from questions of technical competence, there is no reason to
assume that coders are inherently more trustworthy than bankers,
judges, lawyers, or the contracting parties. This seems particularly
important given that, in practice, the process of creating smart
contracts may be centralized, as would be the case when a spe-
cific smart contract is written by a single coder. What is even more
important is that smart contracts are used by parties who have not
written them and lack the technical skills to evaluate their technical
correctness. As smart contracts are written by coders but relied on,
or used, by non-coders, those who use them must trust those who

87 The popularity, or commercial significance of a smart contract platform
is often evaluated based on the highest monthly average of commits, the
number of monthly active developers or by the market value of the as-
sets controlled thereby. Newer blockchains, such as Solana, are likely to
boast more monthly commits and a growing influx of new developers; see:
‘Blockchain Development Trends,’2022 Edition,’ Outlier Ventures (January
2021 – December 2021).

88 Grigore Rosu, ‘Formal Design, Implementation and Verification of Block-
chain Languages’ (2018) 3rd International Conference on Formal Structures
for Computation and Deduction.

89 See, for example, Cardano’s programming language Plutus, which builds
on Haskell (a functional programming language that ensures greater pre-
dictability of the code written therein) and enables the re-use of Haskell
libraries.

90 Torben E Mogensen, Introduction to Compiler Design (2nd ed, Springer
2017) Cohney and Hoffman (n 22) 331.

making it impossible to anticipate how a specific smart contract will
execute. It is hence unclear how smart contracts could provide “cer-
tainty of outcomes” if their actual execution cannot be predicted, not
to mention guaranteed.80

2.4 New programming languages
Leaving aside blockchains, the difficulty of ensuring that smart
contracts execute as intended derives from the shortcomings of the
programming languages in which they are written.81 The academic
debates surrounding such languages often focus on their ability to
reflect the semantic richness of legal prose and/or the complexity of
the underlying transaction.82 The technical reality is, however, more
mundane. Issues pertaining to expressiveness, seem secondary to the
security and predictability of smart contracts written in a particular
programming language, not to mention its suitability for a distributed
execution environment. To demonstrate the associated trade-offs, it
is useful to start with Bitcoin’s scripting language, which is secure but
also limited to simple evaluations of spending conditions. It is also
non-Turing complete, which means that it cannot simulate any gener-
al-purpose computer or computer language.83 The Bitcoin blockchain
is, after all, first and foremost a secure, distributed database – not a
computing platform. In contrast, Ethereum’s smart contract language
(Solidity) is Turing-complete. Unfortunately, while Turing-complete
languages are more expressive and enable more sophisticated smart
contracts, they also increase the likelihood of vulnerabilities and
coding errors.84 They also render it more difficult to ensure that smart
contracts execute as intended or, more generally, to anticipate their
operation. Turing-completeness comes at the expense of security and
predictability. To aggravate matters, while many academics ponder
the optimal programming approach for smart contracts,85 blockchain
start-ups profess the “move-fast-and-break-things” ideology and often
create smart contracts in novel, often hastily designed high-level
programming languages.86 The latter are created to be (relatively)
easy to learn to encourage even less experienced developers to create
applications (aka: smart contracts!) for specific blockchains. The pop-
ularity of many blockchains - and hence the price of their native cryp-
tocurrencies - generally depends on the number of applications they

80 Cardano’s EUTXO model is deterministic, making it is easier to ensure that
the smart contract will be execute as intended because its execution can be
simulated before deployment - both in terms of the execution outcome and
the amount of resources consumed thereby, see: Chakravarty (n 46) 9.

81 We are dealing with a more complex programming paradigm – the
program will be executed in many dispersed locations, not on a single,
centralized server. Some smart contracts are written in traditional pro-
gramming languages, but this seems to be the exception given Ethere-
um’s dominance of the field and ongoing efforts to create domain-spe-
cific programming languages, or DSL, that are tailored to the needs of
blockchains; see: Reza Parizi and others, ‘Smart Contract Programming
Languages on Blockchains: An empirical Evaluation of Usability and
Security’ in S Chen, H Wang and LJ Zhang (eds), Blockchain – ICBC 2018
Lecture Notes in Computer Science (Springer 2018).

82 Guido Governatori and others, ‘On Legal Contracts, Imperative and
Declarative Smart Contracts, and Blockchain Systems’ (2018) 26 Artif In-
tell L 377; Firas Al Khalil and others, ‘Trust in Smart Contracts is a Process
as Well’ in Michael Brenner and others (eds), Financial Cryptography and
Data Security (Springer 2017) 4; William Brown, ‘Limitations of Code in
Contracts: What we can learn from the Plain English Movement’ (2019) 9
VULJ 57.

83 Buterin (n 21) 28; in simpler terms, Turing-completeness means that any
application that runs on a conventional computer can be executed on the
blockchain.

84 Massimo Bartoletti, et al, Verification of Recursive Bitcoin Contracts
(2020) https://arxiv.org/abs/2011.14165 accessed 1 October 2022.

85 Governatori (n 82) 378.
86 see generally: Antonopoulos and Wood (n 33) 128, 129.

107 Smart Contracts: Tales of Trust and Certainty TechReg 2022

languages have a formalized syntax, strict rules defining the seman-
tics of a program and a closed set of permitted inputs. 96 They are
designed to eliminate ambiguity.97 As no programming language is
as expressive as a natural language98 and no natural language has the
semantic and syntactic rigor to instruct computers, perfect transla-
tions are technically impossible.99 Given that smart contracts aim to
provide certainty by guaranteeing performance, the programming
approach should focus on achieving the agreed results, not on ensur-
ing the semantic and syntactic equivalence between the terms and
the code. It seems unnecessary to “translate” the entire legal prose
of a contract rather than encoding its operational provisions, such
as payment or delivery obligations. The focus should be on actions
and results, rather than on words or provisions. Arguably, in some
contexts technical literature may be using the words “legal terms”
interchangeably with “rules” in general. Still, the focus on expressing
legal terms, or legal prose, in code may be misplaced given the inher-
ent difficulty of mapping natural languages onto formal languages.

The second problem concerns the permitted amount of so-called
“on-chain computation,” that is: the number of computational steps
that can be executed in a distributed computing environment repre-
sented by a blockchain. In principle, to prevent overloading Ethereum,
computationally intensive (speak: complex) smart contracts are also
more expensive: the computations are constrained by the price of
so-called gas (a sub-unit of Ether, Ethereum’s native crypto-currency)
and by the amount of gas available in any given block. 100 Ether is
used to meter and restrict the use of computing resources. In con-
trast to Bitcoin, its use as a payment mechanism is secondary. Given
these technical limitations, smart contracts must be kept simple and,
contrary to popular assumptions, cannot execute more sophisticated
transactions or embody more elaborate legal terms. The creation of
an expressive, Turing-complete programming language to enable
complex smart contracts may hence be pointless if they cannot be
executed due to the limits of on-chain computation. At the same time,
moving intensive computations off-chain, to systems existing outside
of the blockchain, contradicts the very purpose of smart contracts
– ensuring that no-one can interfere with their execution. In sum,
concerns regarding the ability to express legal terms in code ignore
the inherent computational limitations of blockchains.

3. Transparency
The blockchain narrative associates transparency with the univer-
sal visibility of the contents of blockchains. In the context of smart
contracts, trust and certainty are supposed to derive from the ability
to view their code: “smart contracts are publicly available for any-
one to audit or scrutinize.”101 Admittedly, transparency provides the
ability to discover obvious errors or patently malicious designs. It
also “enforces correct behavior through embarrassment.”102 Coders

96 Russell and Norvig (n 95) 269-272.
97 Casey Casalnuovo, Kenji Sagae and Prem Devanbu, ‘Studying the difference

between natural and programming language corpora’ (2019) 24 Emp Softw
Eng J 1823.

98 To clarify, even a Turing Complete programming language will never be as
expressive as a natural language 4.

99 For a more detailed explanation, see: Eliza Mik, ‘Contracts in Code?’ (2021)
13 LIT 1.

100 Buterin (n 21) 29; Cohney and Hoffman (n 22) 339.
101 Nic Carter and Linda Jeng, ‘DeFi Protocol Risks: the Paradox of DeFi’

(2021) https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3866699
accessed 1 October 2022; Adam J Kolber, ‘Not-So-Smart Blochchain
Contracts and Artificial Responsibility’ (2018) Stan Tech L Rev 198, 208;
Cohney and Hoffman (n 22) 322; Schär (n 34) 169; Nakamoto (n 14) 2.

102 This expression has been suggested by my colleague Stanley Yong.

created them.91 In his acceptance speech for the Turing award, Ken
Thompson famously stated: “You can’t trust code that you did not
totally create yourself.”92 The problem is that in public blockchains,
such as Ethereum, anybody is allowed to create a smart contract
and make it available for others to use. While this approach exem-
plifies the spirit of decentralization, it does not guarantee that smart
contract creators have the necessary expertise and are not mali-
cious. As indicated, blockchains do not provide any form of quality
assurance of the smart contracts executed thereon. A competent but
dishonest coder may deliberately create a smart contract containing
a vulnerability in order to exploit it once the smart contract controls
more crypto-currencies. An incompetent but well-meaning coder
may create such vulnerability unintentionally and render the smart
contract susceptible to exploits by more technologically competent
coders. Irrespective of whether the error or vulnerability is inten-
tional or not, hapless users will face the risk of financial losses.
To clarify, smart contract developers must not be conflated with
so-called blockchain core developers, this is, programmers with
‘commit access’ to the source code of a given blockchain that allows
them to make changes to the underlying consensus algorithms. The
latter constitute a small group of elite programmers, with estab-
lished reputations and a track record of reliable performance.93 In
contrast, many smart contracts developers are anonymous, inexpe-
rienced novices.94

In sum, code is always written by humans. If such humans are dis-
honest or incompetent, then the code they create cannot be trusted
– not to mention eliminate the need for trust. Moreover, if such
humans cannot be identified, then there is no one to be held liable
for any losses caused by “malfunctioning” smart contracts.

2.6 Correctness of Expression
The previous paragraphs addressed the challenges of ensuring the
technical correctness of code. A separate question is whether a par-
ticular smart contract accurately reflects the agreement. If, following
the dominant narrative, smart contracts embody and/or execute legal
terms, then these terms must be expressed in code exactly as agreed.
Any discrepancy between the code and the terms would defeat the
very purpose of smart contracts. Two problems arise.

The first concerns the expression of legal terms in any of the available
programming languages. The difficulties of expressing contractual
terms in code are usually underplayed, the simplistic assumption
being that such terms can be translated into code. Legal terms are,
however, written in natural languages - and natural languages are
expressive but imprecise. The meaning of each word depends on
its context, there being no standardized mapping from symbols
to objects or a formalized grammar.95 In contrast, programming

91 De Filippi, Mannan and Reijers (n 7) ; Cohney and Hoffman (n 22) 328;
Guadamuz (n 10) 14.

92 Ken Thompson, ‘Reflections on Trusting Trust,’ Turing Award Lecture’
(1984) 27 Communications of the ACM 760, 763.

93 Angela Walch, ‘In Code(rs) we Trust: Software Developers as Fiduciaries
in Public Blockchains’ in Philip Hacker and others (eds), Regulating Block-
chain: Techno-Social and Legal Challenges (OUP 2019) 58; Gili Vidan and Vili
Lehdonvirta, ‘Mine the gap: Bitcoin and the maintenance of trustlessness’
(2018) New Media & Soc 42.

94 Gabriel de Sousa Matsumura and others, ‘Vulnerabilities and Open
Issues of Smart Contracts: A Systematic Mapping’ in: Computational
Science and Its Applications (Springer 2021).

95 Stuart J Russell and Paul Norvig, Artificial Intelligence: A Modern Approach
(4th edn, Pearson 2021) 270, 874, 875.

108 Smart Contracts: Tales of Trust and Certainty TechReg 2022

3.2 Transparency is not clarity of rules
The transparency of the smart contract gives little assurance as to the
rules it will execute. Smart contracts are supposed to provide trust
by executing as coded. This does not mean that they will execute as
intended. It may, in fact, be difficult to establish what the smart con-
tract was actually intended to do. This seemingly small detail is easily
overlooked: when stating that the smart contract may not execute “as
intended,” it is necessary to inquire “as intended by whom – its crea-
tor or its user?” There may be a discrepancy between the description
of the smart contract, which will form a user’s primary motivation
to deploy it, and what the code is actually written, or intended by
the creator, to do. To illustrate: a smart contract is accompanied by
a description in natural language, “this smart contract will transfer
payments of $X from account A to account B on the 1st of every month
for a period of 12 months.” The actual code, however, contains a rule
that a small percentage of each payment (eg., 0.1% of $X) will be sent
to an anonymous account C. In such instance, the intent of the coder
differs from the intent of the user and may remain hidden or discover-
able only after extensive testing. The user will most likely be unable to
determine what the smart contract is actually programmed to do and
rely on its description in natural language. Although the dominant
blockchain narrative assumes that if the code is visible, then the rules
expressed thereby are visible and hence known, it must be acknowl-
edged that such rules may be difficult to “reverse engineer” from
the code. In “traditional” transactions, when the rules, such as the
terms and conditions of a contract, are written in a natural language,
it is usually unnecessary to distinguish between the rules and their
expression. In such instance providing the rules in English is, well,
synonymous with providing the rules. If the language is clear, then
the rules described therein can be discerned. The problem will lie in
ensuring that the rules are followed. In contrast, the smart contract
expresses certain rules, but it does not clearly communicate them
because its code is not understandable without technical expertise-
When presented with a smart contract, it may be difficult to establish
whether its code correctly represents the agreed legal terms or con-
forms with its description in natural language. In case of a discrep-
ancy between the code and its description, it becomes necessary to
establish which expression will prevail. Consequently, contrary to the
popular transparency narrative, the visibility of the code is of limited
practical relevance.

3.3 Transparency is not predictability
Transparency may facilitate the discovery of obvious coding errors
or vulnerabilities,106 but it cannot reveal how the smart contract will
actually execute.107 The visibility of the code provides little insight as
to what it will do or what output it will produce. 108 Vulnerabilities are
not easily detectable so that code that appears technically correct may
still contain them. To predict their future behavior, it does not suffice

106 Asem Ghaleb and Karthik Pattabiraman, ‘How Effective are Smart Contract
Analysis Tools? Evaluating Smart Contract Static Analysis Tools Using Bug
Injection,’ in (2020) Proceedings of the 29th ACM SIGSOFT International
Symposium on Software Testing and Analysis; Josselin Feist, Gustavo Grieco
and Alex Groce, ‘Slither: a Static Analysis Framework for Smart Contracts,’
in (2019) IEEE/ACM 2nd International Workshop on Emerging Trends in Soft-
ware Engineering for Blockchain 8.

107 To understand what a program will do, it must be tested and, ideally, for-
mally verified, see generally: Joshua A Kroll and others, ‘Accountable Al-
gorithms’ (2017) 165 U Penn L Rev 633, 645; Ye Liu and others, ‘Towards
Automated Verification of Smart Contract Fairness,’ in (2020) Proceedings
of the 28th ACM Joint European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering

108 Antonopoulos and Wood (n 33) 172, 173.

who publicly deploy their smart contracts would want to ensure that
their code is well written and appears professional. This assumption,
however, works only for coders concerned about their reputation and
is unlikely to discourage dishonest – and anonymous - coders. The
glorification of transparency is questionable for multiple reasons. As
described below, it does not imply that the code is not only readable
but also understandable. An inspection of the code will not necessar-
ily reveal the rules (or “legal terms”) embodied in a smart contract
(“this code does X”), not to mention whether such rules will actually
be followed (“this code has been extensively tested and formally veri-
fied to ensure it does X”).

3.1 Transparency is not understandability
The transparency of a smart contract does not translate into its
understandability. Most smart contracts are written in high-level
programming languages and are generally expressed as source code,
which takes the form of text. Such text cannot, however, be read in
the same manner people read traditional contracts. Source code
facilitates programming as it abstracts from the technical details of
the underlying processor and relies on standardized, textual expres-
sions. Source code is, however, designed to convey instructions
to compilers or interpreters – not to convey meaning to humans.
Moreover, the meaning and effect of individual words and expressions
in source code are specific to a programming language. Without an
in-depth knowledge of the relevant programming language, the code
is not “understandable,” especially if some programmers use unusual
names for variables or functions.103 Moreover, although programs
often contain comments in natural language explaining specific
lines of code, this is generally done to facilitate future revisions by
other coders, not to facilitate understanding in general. Moreover,
if the transparency narrative is to be followed, then the code of the
compiler should also be made available. After all, the visibility of the
smart contract’s source code seems of limited usefulness if such
code must be converted and if the “converting mechanism” (that is:
the compiler) may affect its execution. The compiled bytecode can, in
fact, be regarded as more important than the source code – especially
given that the compilation process may introduce errors into the final,
executable code. Notably, many smart contracts are only published
in bytecode,104 which is not human readable. Although bytecode is
easily decompiled into source code, the mere need to perform this
operation may overwhelm the average user – not to mention the fact
that such operation only leads back to square one: to human-readable
but incomprehensible computer instructions. Transparency aside, the
idea of an average user inspecting and testing the smart contract (and
its compiler!) is unrealistic105 as it would, amongst others, require
a high level of technical competence and, ideally, access to easy-to-
use automatic analysis tools. Alternatively, users could pay to have
the code audited or tested. The latter option, however, introduces a
human intermediary and hence a potential source of bias and uncer-
tainty. In effect, those who decide to use smart contracts must be
technology literate or hire expert assistance. Their only other option
is to trust the coder who created the smart contract. The fact that the
code is in viewable and accessible seems of limited relevance.

103 Emanuel Regnath and Sebastian Steinhorst, ‘SmaCoNat: Smart Contracts
in Natural Language’ (2018) Forum on Specification & Design Languages
(FSDL) 5.

104 Zheng (n 31) 475.
105 Walch (n 43) 14.

109 Smart Contracts: Tales of Trust and Certainty TechReg 2022

ified and remains beyond the control of any single entity.115 Immu-
tability is also associated with smart contracts being tamper-proof,
that is: resistant to any form of external interference. Immutability
is supposed to ensure absolute adherence to the rules embedded
in the code. Upon closer examination, however, immutability raises
significant concerns, especially if smart contracts are to govern real
world relationships. It is one thing to preclude third parties (e.g.,
hackers) from altering their code, it is yet another to preclude the
possibility of modifying smart contracts by those who created them
and/or by those who use them. Unauthorized alterations must be
distinguished from permitted and indispensable modifications. A
blank statement that any form of subsequent interference is unde-
sirable is simply not true.

4.1 Modifiable Code
Smart contracts are computer programs - and every computer
program requires subsequent or even ongoing modifications116 to
meet the changing needs of their users and/or to correct errors and
vulnerabilities. Perfect code does not exist. Smart contracts are no
exception. Once deployed on the blockchain, all errors and vul-
nerabilities in smart contracts become permanent. To address the
problems resulting from immutability, methods are being developed
to enable smart contract “modifications” by, for example, having
their code refer to secondary smart contracts or by “migrating” from
faulty smart contracts to updated ones.117 While the idea of correcting
smart contracts seems commendable, it also reneges on their main
promise – that of being immune to outside interference. After all, any
modifications require human involvement after the smart contract is
deployed. Not only would “modifiable” smart contracts cease to be
immutable, but they would also require governance mechanisms indi-
cating the entities authorized to make such modifications and, ideally,
the permitted scope thereof. It must be assumed that the parties
themselves would be technically incapable of amending the code and
would require assistance from third parties, that is - expert coders.
It is worth observing that the ability to modify the smart contract
does not guarantee that the modified code is correct and error-free.
It also gives power to those who are authorized to perform such
modifications.118 This creates a difficult situation: the immutability of
smart contracts is disadvantageous due to the statistical inevitability
of coding errors and vulnerabilities but introducing the possibility of
modifying smart contracts defeats their very purpose as it renders
them “mutable” and hence less trustworthy.

4.2 Comprehensive rules
The code of a smart contract is an expression of certain rules and, fol-
lowing the popular blockchain narrative, such rules are generally syn-
onymous with the terms of a contract. If both the code and the rules
expressed thereby are to be immutable, then both must be perfect

115 A contract can be “deleted,” leaving a blank account on Ethereum.
116 Cohney and Hoffman (n 22) 325, 343.
117 Erik Daniel and Florian Tschrosch, ‘Towards Verifiable Mutability for

Blockchains’ (2021) https://arxiv.org/pdf/2106.15935.pdf accessed 1
October 2022; B Marino and Ari Juels, ‘Setting Standards for Altering
and Undoing Smart Contracts,’ in J Alferes and others, (eds) Rule
Technologies. Research, Tools, and Applications (Springer 2016).

118 For a detailed discussion see: Pedro Antonino and others, ‘Specifica-
tion is Law: Safe Creation and Upgrade of Ethereum Smart Contracts’
(2022) at https://arxiv.org/abs/2205.07529 accessed 1 October 2022;
see also: Mehdi Salehi, Jeremy Clark and Mohammad Mannan, ‘Not so
immutable: Upgradeability of Smart Contracts on Ethereum’ (2022)
https://arxiv.org/abs/2206.00716?context=cs accessed 1 October 2022.

that smart contracts are viewed - they must be extensively tested and
formally verified before deployment. While testing denotes the broader
activity of examining the expression and operation of a program,
formal verification concerns the program’s internal consistency and
the correctness of its underlying algorithm.109 Testing can be subdi-
vided into static analysis, which involves the inspection of code, and
dynamic analysis, which involves its actual execution.110 Transparency
is predominantly associated with static analysis, which examines the
smart contract in isolation and cannot predict its execution. Only
dynamic analysis can, to an extent, determine whether the smart
contract will operate as intended.111 Unfortunately, dynamic analysis
requires a test environment that closely resembles the final execution
environment. Testnets cannot, however, replicate the complexity of
the actual execution environment, particularly with regards to the
interactions between many different smart contracts. In principle,
testing can only provide relative certainty as to the specific inputs that
have been tested.112 It is practically infeasible to test a smart contract
for every possible input or interaction – especially if it is to execute
in an open environment, where it may encounter countless smart
contracts written by coders with varying motivations and competence
levels. To fully illustrate the practical difficulties of testing – and hence
ensuring that smart contracts execute as intended - this paragraph
should discuss public test-nets, blockchain emulators and simulators,
as well as the challenges of developing testing strategies.113 The tech-
nical issues are complex, but the point is simple: testing computer
programs is technical skill that most users do not have and, more
importantly, it is difficult to imagine the resources required to test a
smart contract to the extent that would render it predictable.

4. Immutability
Tales of trust and certainty are inextricably linked to the concept
of immutability. In the context of blockchains, immutability con-
cerns the inability to change the underlying consensus algorithm
and the contents of the individual blocks.114 In the context of smart
contracts, immutability concerns the inability to change their code.
Once deployed on a blockchain, the smart contract cannot be mod-

109 See: Daniele Magazzeni and others, ‘Validation and verification of smart
contracts: a research agenda,’ (2017) 9 Computer 50, 54; technically, smart
contracts require verification, validation and testing. Verification aims to
ensure that ”we are developing the right product” (i.e. it meets the speci-
fications), validation aims to ensure that ”we have developed the product
right” (i.e. it fulfills its intended purpose) and testing should reveal ”the
existence of errors in the product,” see: Osman Balci, ‘Validation, verifi-
cation, and testing techniques throughout the life cycle of a simulation
study’ (1994) 53 Annals of Operations Research 121.

110 Richard E Fairley, ‘Tutorial: Static Analysis and Dynamic Testing of Com-
puter Software’ (1978) Computer 14, 22; Dolores R Wallace, and Roger
U Fujii, ‘Software verification and validation: an overview’ (1989) 6 IEEE
Software 10.

111 Here, for the sake of simplicity, it is useful to assume that the output
intended by the coder is identical to the output desired by the user of a
particular smart contract.

112 In principle, no amount of testing guarantees how a program would op-
erate in a situation that has not been tested, see: Michael Sipser, Intro-
duction to the Theory of Computation 201 (2006), Alan M Turing, ‘On
Computable Numbers, with an Application to the Entscheidungsproblem.
A Correction’ (1937) 43 Proc London Math Soc’y 544, 544-46 ; Axel Halin
and othersl, ‘Test them all, is it worth it? Assessing configuration sampling
on the JHipster Web development stack’ (2019) 24 Empirical Software En-
gineering 674.

113 see: Chaimaa Benabbou, Chaimaa and Önder Gürcan, ‘Survey of Verifica-
tion, Validation and Testing Solutions for Smart Contracts’ (2021)
https://arxiv.org/abs/2112.03426 accessed 1 October 2022.

114 Walch (n 40) 735, 736; Jeffrey M. Lipshaw, ‘The Persistence of “Dumb”
Contracts’ (2019) 2 Stan J Blockchain L & Pol’y 1, 24.

110 Smart Contracts: Tales of Trust and Certainty TechReg 2022

it bears emphasizing that the consensus algorithms underlying block-
chains cannot determine or validate the correctness of any off-chain
information.122 Oracles obtain off-chain information from external
sources and, in principle, are incapable of directly establishing its
veracity. In other words, oracles “only” provide information – they do
not create or verify its correctness. The resulting risks are obvious: if
the off-chain information is incorrect, the smart contract will release
crypto-currencies even if the release conditions were not met. Logi-
cally, even a smart contract written in perfect code cannot be trusted
if it can execute based on false off-chain information. Consequently,
as oracles effectively control the release of assets held by a smart
contract, they must be trusted. This is known as “the oracle problem.”
The off-chain information may be incorrect for multiple reasons, both
technical and non-technical. Technical reasons may derive from pro-
gramming errors or from external interference. They may concern the
data source(s), the oracle itself or, in the case of oracle networks - the
individual nodes, the entire network as well as the transfer mech-
anisms between data sources and oracles. Non-technical reasons
concern the fact that individual oracles as well as data sources may
become corrupted.123 Even if an oracle operates correctly and the data
source is reliable, the entities managing the oracle and/or the data
source may alter the information given sufficient commercial incen-
tives, i.e., bribery. The likelihood of such compromise is correlated to
the value of the cryptocurrencies controlled by a given smart contract.
The more important the off-chain information and the more valuable
the cryptocurrencies controlled by a given smart contract, the greater
the level of trust that must be placed in the oracle – and the greater
the incentive for its compromise.124 Unsurprisingly, in parallel with the
aforementioned vulnerabilities of smart contracts, exploits based on
oracle manipulation are increasingly common.125

5.2 Attempted Solutions
To date, most efforts to solve the oracle problem, focus on its techni-
cal component since the socio-economic dimension is more difficult
to address. To discuss such efforts, it is useful to introduce a general
taxonomy of oracles. Oracles come in two broad categories: cen-
tralized and consensus-based. Centralized oracles are, as the name
implies, controlled by a single entity. Centralized oracles are more
suitable to furnishing information that is not publicly available, such
as information concerning products moving through supply chains.
Given that centralized oracles cannot be “trustless,” they aim to be
“provably” honest or, at least, capable of establishing the integrity
and authenticity of the off-chain information.126 As centralised oracles
require that the entities operating them be trustworthy, they contra-
dict the very purpose of smart contracts - that of eliminating the need
for trust in a single entity. There is, after all, no point in construct-
ing an elaborate ecosystem around a decentralized and distributed
execution environment, such as the Ethereum blockchain, if the

122 Marco Comuzzi, Cinzia Capiello and Giovanni Meroni, ‘On the need for
data quality assessment in Blockchains’ (2021) IEEE Internet Computing
71, 75.

123 Cohney and Hoffman (n 22) 355.
124 Jesus Rodriguez, ‘The Middleman of Trust: The Oracle Paradox and Five

Protocols that Can Bring External Data into the . . . , HACKERNOON (July
31, 2018) https://hackernoon.com/the-middleman-of-trust-the-oracle-par-
adox-and-five-protocols-that-can-bring-external-data-into-the-df39b63e-
92ae accessed 1 October 2022.

125 Caldarelli (n 121) 8; see also: Chainalysis, The 2022 Crypto Crime Report
(2022) 72, 73, https://go.chainalysis.com/rs/503-FAP-074/images/Cryp-
to-Crime-Report-2022.pdf accessed 1 October 2022.

126 Junhoo Park and others, ‘Smart contract data feed framework for priva-
cy-preserving oracle system on blockchain’ (2021) 10 Computers 7, 10, 12.

from the moment the smart contract is deployed. More specifically,
for the smart contract to be of practical value, its rules embodied
must be comprehensive and “future-compatible”: capable of address-
ing a wide range of events that might affect a given smart contract
throughout its lifecycle. The “certainty of outcomes,” guaranteed by
immutability, requires that such outcomes remain aligned with chang-
ing circumstances, including price fluctuations, pandemics, or natural
disasters. The resulting practical difficulties are immediately apparent.
Market conditions may change dramatically, even within short periods
of time. A smart contract that looked attractive when deployed in June
may become nonsensical when executed in October. Maintaining
an alignment between the smart contract and any ongoing events
would, however, necessitate detailed and complex code as well as an
unprecedented level of foresight. A large upfront investment would
be required to provide for a wide range of possible execution paths,
especially for smart contracts governing long-term relationships. To
re-emphasize: once deployed, the smart contract will continue exe-
cuting irrespective of the surrounding circumstances. If a response to
such changed circumstances has not been provided for in the terms,
the smart contract may become commercially infeasible. Such would
be the case, for example, if it continued to release payments far above
the market price because its creator failed to encode an adequate
price adjustment formula or if it continued to enable access to certain
premises despite the fact that new regulations required that such
premises be closed due to public safety measures.119 The problems
are not technical but practical and concern the inability to predict
how future events will affect a smart contract’s viability. The fact that
the rules embedded in the code are immutable and that they will be
followed “no matter what” can be a boon or a bust. Everything will
depend on whether the users of a particular smart contract know and
are willing to accept the risk that the smart contract may cease to be
commercially viable in the event of a change in circumstances.

5. Integrating with the Real World
Neither blockchains nor smart contracts interface with the outside
world. To remain “trustless and secure” blockchains are insulated
from external input. A smart contract devoid of access to information
about events in the real world is, however, of limited commercial
importance as it cannot facilitate, or execute, traditional transac-
tions that involve real-world assets and events. As indicated, smart
contracts exist on-chain and “codify the conditions” of release of
the crypto-assets controlled by them. If such conditions concern
outside events, such as weather data, exchange rates, the arrival of
a shipment or the delivery of a container, mechanisms are required
to establish whether they have been fulfilled.120 Consequently, smart
contracts must obtain information about events in the real world
(“off-chain information”). Entities providing such information are
called “oracles.”121 Their role is to provide off-chain information auto-
matically, without human participation. The benefits of smart contract
would be lost if the fulfillment of the release conditions had to be
confirmed by a fallible, biased and untrustworthy human. Oracles,
however, come with their unique set of challenges.

5.1 The “Oracle Problem”
Oracles exist off-chain, in the real world, and are created by human
coders. They do not share any attributes of blockchains. In particular,

119 Could smart contract creator have predicted the pandemic and the recent
crypto-crash?

120 Werbach (n 7) 547.
121 See generally: Guilio Caldarelli, ‘Understanding the Blockchain Oracle

Problem : A Call for Action’ (2020) 11 Information 509.

111 Smart Contracts: Tales of Trust and Certainty TechReg 2022

Chainlink.129 There, nodes are given crypto-economic incentives to
report correct information: nodes providing incorrect reports forfeit
the tokens they have initially deposited – or staked - to participate
in the DON.130 Such system “should render attacks such as bribery
unprofitable for an adversary, even when the target is a smart contract
with high monetary value.”131 Unfortunately, staking only works if the
market price of the deposited crypto-currency exceeds the value of the
assets controlled by a smart contract. Moreover, to address divergent
reports, DONs require two tiers of nodes: the first directly accesses
the data sources and generates reports, the second monitors irregu-
larities in the first tier. Effectively, some nodes become “watchdogs”132
reporting the incorrect behavior of other nodes.

In sum, centralized oracles are efficient but, given that a single entity
controls the oracle, they remain vulnerable, both technically and eco-
nomically. Consensus oracles increase the reliability of the off-chain
information but require a complex, multi-layered infrastructure to
coordinate the nodes to achieve an acceptable degree of “trustless-
ness.” 133

6. Concluding Observations
Claims regarding the transformative potential of smart contracts
must be investigated, not blindly trusted. It is necessary to acknowl-
edge the difficulties of creating reliable and predictable smart
contracts. It is also necessary to to examine the immediate practical
implications of such concepts as immutability or transparency.

Tales of their future significance notwithstanding, smart contracts are
first and foremost computer programs – and it is difficult to rational-
ize how a computer program could eliminate trust or enhance com-
mercial certainty. The fact that smart contracts execute on blockchains
changes little in this regard. There is, after all, no blockchain-specific
mechanism preventing the deployment of smart contracts that con-
tain errors and vulnerabilities. Consensus algorithms protect against
malicious nodes but not against malicious or incompetent coders.
The challenges inherent in the execution environment represented
by permissionless blockchains, combined with novel programming
languages and novice coders, produce a dangerous combination that
contradicts both certainty and trust. The transparency of the smart
contract does not bring any immediate benefits to the average user.
The visibility of the code does not translate into its readability or
understandability. It also provides limited assurances as to the quality
of the smart contract or insights as to how it will actually execute.
Unless the parties have created the smart contract themselves and/
or extensively tested it prior to deployment, they have no guarantees
as to the outcomes it will produce. In practice, only expert program-
mers can evaluate the viability of a given smart contract and, at least
theoretically, ensure that it will execute as intended. The immutability
of smart contracts seems equally disadvantageous. It would only
be beneficial if it was possible to ensure that their code was perfect

129 Lorenz Breidenbach and others , ‘Chainlink 2.0: Next Steps in the
Evolution of Decentralized Oracle Networks (2021) https://research.
chain.link/whitepaper-v2.pdf?_ga=2.138147696.1573418708.1621330901-
1199595055.1621330901 accessed 1 October 2022.

130 See: J Adler and others, ‘Astraea: A decentralized blockchain oracle,’ in
2018 IEEE International Conference on Internet of Things (iThings) and IEEE
Green Computing and Communications (GreenCom) and IEEE Cyber, Physi-
cal and Social Computing (CPSCom) and IEEE Smart Data 1145.

131 Breidenbach (n 129) 17, 18.
132 Breidenbach (n 129) 88.
133 Hamda Al-Breiki and others , ‘Trustworthy Blockchain Oracles: Review,

Comparison, Research Challenges’ (2020) 8 IEEE Access 85678.

success of a transaction depends on – or requires trust in – an oracle.
The problem of centralization is addressed by so-called consensus
oracles: networks of oracle nodes, which collectively determine which
off-chain information should be provided to smart contracts.127 Such
determination relies on a combination of consensus protocols,
voting procedures and/or economic incentives. In principle, the
aim is to ensure co-operation between the nodes to “agree” on the
correctness of off-chain information. To minimize the risk of false
information, consensus oracles require a larger number of nodes and
data sources. For example, Schelling oracles rely on crowdsourcing
knowledge about certain events and involve entities betting their rep-
utation or assets to prove that information about those events is true.
The information is openly evaluated by other platform participants,
the assumption being that if many participants confirm its accuracy,
such information must be true. Unfortunately, Schelling oracles
can only verify publicly available information and are of little use in
situations where the smart contract requires information concerning
the fulfillment of unique, transaction-specific payment conditions.128
Establishing the price of a publicly traded stock differs from establish-
ing the arrival of a shipment at a private location. Other oracle voting
strategies are exemplified by prediction markets, such as Augur, which
enable users to bet on anything (elections, sports) and be rewarded
or penalized depending on the correctness of their predictions.

Another example of consensus-based oracles are decentralized oracle
networks, (“DONs”) which require many nodes to reach consensus
on the correctness of off-chain information obtained from multiple
data sources. Ideally, the number of nodes and data sources should
scale in proportion to the value of a given smart contract, so that
smart contracts controlling more valuable assets obtain information
from a larger number of nodes, which in turn obtain information
from a larger number of data sources. The problem with this scenario
is that once there are many oracle nodes and many data sources, it
becomes necessary to ensure their efficient co-operation in reaching
consensus as to whether the information is correct. Notwithstanding
the similarity of the terminology, consensus mechanisms in DONs
differ from their blockchain counterparts. While the latter confirm
compliance with concise technical parameters in a closed, artificial
system, the former must determine the veracity of information about
real-world events, with all its ambiguities, gradations, and complexi-
ties. Establishing the timestamp of a block differs from establishing
whether the delivered goods arrived at a specified location and match
their description. To aggravate matters, when reaching consensus
on the correctness of off-chain information, the nodes must rely
on external data sources and are unable to directly verify whether
such information reflects reality. In other words, DONs rely on the
statistical likelihood that the off-chain information reported by the
majority of nodes is correct, not on the actual verification of such
information. Consequently, DONs can only establish how many
nodes reported certain information as true and must address situa-
tions where different nodes provide divergent reports. The larger the
number of nodes, the greater the risk of discrepancies and the greater
the need for mechanisms ensuring that nodes “collectively exhibit
correct behaviour.” Examples of such mechanisms can be found in

127 Shuai Wang and others, ‘A Novel Blockchain Oracle Implementation
Scheme Based on Application Specific Knowledge Engines’ in (2019)
IEEE International Conference on Service Operations and Logistics, and
Informatics (2019) 258.

128 Jack Peterson and others, Augur: a decentralized oracle and prediction
market platform (2015) https://arxiv.org/abs/1501.01042 accessed 1 Octo-
ber 2022.

112 Smart Contracts: Tales of Trust and Certainty TechReg 2022

from the outset and that the rules embodied therein were sufficiently
comprehensive to allow for changed circumstances. Setting the smart
contract in stone at the time of deployment resembles fixing the
course of a cruise liner before it leaves port. There may be icebergs.
We all know what happened to the Titanic. Code must be capable
of being modified and contracts must remain responsive to their
surroundings. Commerce wants certainty but also flexibility. Smart
contracts that depart from the blockchain ideology and are amenable
to modifications, require mechanisms governing the extent of such
modifications and a clear indication of those who are allowed to
introduce them. Smart contracts that remain true to the blockchain
ideology and remain immutable, require mechanisms to allocate
the risks resulting from their use. Given the statistical inevitability of
coding errors and vulnerabilities, such risks are non-trivial. Additional
risks derive from the oracle problem. The ability to trust a smart
contract depends on the trustworthiness of the oracle and the data
source. Efforts to solve the oracle problem demonstrate that trust and
certainty cannot be achieved solely by technological means. Even the
most elaborate technical solution will contain a weak spot, be it in the
form of a corruptible data source, a faulty oracle or a badly designed
governance system for decentralized oracle networks.

Irrespective of their legal classification, smart contracts are tech-
nically incapable of enhancing certainty or eliminating the need to
trust humans. Legal analyses of smart contracts must be based on
their actual technical attributes and on an understanding of the risks
involved in their use. Technology is a question of fact. Only after
establishing the facts, is it possible to select the most appropriate
legal response, if any.

Copyright (c) 2022, Eliza Mik

Creative Commons License
This work is licensed under a Creative Commons Attribution-
Non-Commercial-NoDerivatives 4.0 International License.

